Back to Search Start Over

Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions.

Authors :
Spiess M
Hernandez-Varas P
Oddone A
Olofsson H
Blom H
Waithe D
Lock JG
Lakadamyali M
Strömblad S
Source :
The Journal of cell biology [J Cell Biol] 2018 Jun 04; Vol. 217 (6), pp. 1929-1940. Date of Electronic Publication: 2018 Apr 09.
Publication Year :
2018

Abstract

Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive β1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive β1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation.<br /> (© 2018 Spiess et al.)

Details

Language :
English
ISSN :
1540-8140
Volume :
217
Issue :
6
Database :
MEDLINE
Journal :
The Journal of cell biology
Publication Type :
Academic Journal
Accession number :
29632027
Full Text :
https://doi.org/10.1083/jcb.201707075