Back to Search Start Over

Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor.

Authors :
Kim DS
Arsalan M
Park KR
Source :
Sensors (Basel, Switzerland) [Sensors (Basel)] 2018 Mar 23; Vol. 18 (4). Date of Electronic Publication: 2018 Mar 23.
Publication Year :
2018

Abstract

Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works.<br />Competing Interests: The authors declare no conflict of interest.

Details

Language :
English
ISSN :
1424-8220
Volume :
18
Issue :
4
Database :
MEDLINE
Journal :
Sensors (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
29570690
Full Text :
https://doi.org/10.3390/s18040960