Back to Search
Start Over
Folding Determinants of Transmembrane β-Barrels Using Engineered OMP Chimeras.
- Source :
-
Biochemistry [Biochemistry] 2018 Apr 03; Vol. 57 (13), pp. 1987-1996. Date of Electronic Publication: 2018 Mar 20. - Publication Year :
- 2018
-
Abstract
- Transmembrane β-barrel proteins (OMPs) are highly robust structures for engineering and development of nanopore channels, surface biosensors, and display libraries. Expanding the applications of designed OMPs requires the identification of elements essential for β-barrel scaffold formation and stability. Here, we have designed chimeric 8-stranded OMPs composed of strand hybrids of Escherichia coli OmpX and Yersinia pestis Ail, and identified molecular motifs essential for β-barrel scaffold formation. For the OmpX/Ail chimeras, we find that the central hairpin strands β4-β5 in tandem are vital for β-barrel folding. We also show that the central hairpin can facilitate OMP assembly even when present as the N- or C-terminal strands. Further, the C-terminal β-signal and strand length are important but neither sufficient nor mutually exclusive for β-barrel assembly. Our results point to a nonstochastic model for assembly of chimeric β-barrels in lipidic micelles. The assembly likely follows a predefined nucleation at the central hairpin only when presented in tandem, with some influence from its absolute position in the barrel. Our findings can lead to the design of engineered barrels that retain the OMP assembly elements necessary to attain well-folded, stable, yet malleable scaffolds, for bionanotechnology applications.
- Subjects :
- Bacterial Outer Membrane Proteins genetics
Escherichia coli genetics
Escherichia coli Proteins genetics
Hydrolases genetics
Micelles
Protein Engineering
Recombinant Fusion Proteins genetics
Yersinia pestis genetics
Bacterial Outer Membrane Proteins chemistry
Escherichia coli chemistry
Escherichia coli Proteins chemistry
Hydrolases chemistry
Protein Folding
Recombinant Fusion Proteins chemistry
Yersinia pestis chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1520-4995
- Volume :
- 57
- Issue :
- 13
- Database :
- MEDLINE
- Journal :
- Biochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 29537829
- Full Text :
- https://doi.org/10.1021/acs.biochem.8b00012