Back to Search Start Over

Role of Ligand-Driven Conformational Changes in Enzyme Catalysis: Modeling the Reactivity of the Catalytic Cage of Triosephosphate Isomerase.

Authors :
Kulkarni YS
Liao Q
Byléhn F
Amyes TL
Richard JP
Kamerlin SCL
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2018 Mar 21; Vol. 140 (11), pp. 3854-3857. Date of Electronic Publication: 2018 Mar 13.
Publication Year :
2018

Abstract

We have previously performed empirical valence bond calculations of the kinetic activation barriers, Δ G <superscript>‡</superscript> <subscript>calc</subscript> , for the deprotonation of complexes between TIM and the whole substrate glyceraldehyde-3-phosphate (GAP, Kulkarni et al. J. Am. Chem. Soc. 2017 , 139 , 10514 - 10525 ). We now extend this work to also study the deprotonation of the substrate pieces glycolaldehyde (GA) and GA·HP <subscript>i</subscript> [HP <subscript>i</subscript> = phosphite dianion]. Our combined calculations provide activation barriers, Δ G <superscript>‡</superscript> <subscript>calc</subscript> , for the TIM-catalyzed deprotonation of GAP (12.9 ± 0.8 kcal·mol <superscript>-1</superscript> ), of the substrate piece GA (15.0 ± 2.4 kcal·mol <superscript>-1</superscript> ), and of the pieces GA·HP <subscript>i</subscript> (15.5 ± 3.5 kcal·mol <superscript>-1</superscript> ). The effect of bound dianion on Δ G <superscript>‡</superscript> <subscript>calc</subscript> is small (≤2.6 kcal·mol <superscript>-1</superscript> ), in comparison to the much larger 12.0 and 5.8 kcal·mol <superscript>-1</superscript> intrinsic phosphodianion and phosphite dianion binding energy utilized to stabilize the transition states for TIM-catalyzed deprotonation of GAP and GA·HP <subscript>i</subscript> , respectively. This shows that the dianion binding energy is essentially fully expressed at our protein model for the Michaelis complex, where it is utilized to drive an activating change in enzyme conformation. The results represent an example of the synergistic use of results from experiments and calculations to advance our understanding of enzymatic reaction mechanisms.

Details

Language :
English
ISSN :
1520-5126
Volume :
140
Issue :
11
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
29516737
Full Text :
https://doi.org/10.1021/jacs.8b00251