Back to Search Start Over

Peroxiredoxin as a functional endogenous antioxidant enzyme in pronuclei of mouse zygotes.

Authors :
Morita K
Tokoro M
Hatanaka Y
Higuchi C
Ikegami H
Nagai K
Anzai M
Kato H
Mitani T
Taguchi Y
Yamagata K
Hosoi Y
Miyamoto K
Matsumoto K
Source :
The Journal of reproduction and development [J Reprod Dev] 2018 Apr 13; Vol. 64 (2), pp. 161-171. Date of Electronic Publication: 2018 Mar 02.
Publication Year :
2018

Abstract

Antioxidant mechanisms to adequately moderate levels of endogenous reactive oxygen species (ROS) are important for oocytes and embryos to obtain and maintain developmental competence, respectively. Immediately after fertilization, ROS levels in zygotes are elevated but the antioxidant mechanisms during the maternal-to-zygotic transition (MZT) are not well understood. First, we identified peroxiredoxin 1 (PRDX1) and PRDX2 by proteomics analysis as two of the most abundant endogenous antioxidant enzymes eliminating hydrogen peroxide (H <subscript>2</subscript> O <subscript>2</subscript> ). We here report the cellular localization of hyperoxidized PRDX and its involvement in the antioxidant mechanisms of freshly fertilized oocytes. Treatment of zygotes at the pronuclear stage with H <subscript>2</subscript> O <subscript>2</subscript> enhanced pronuclear localization of hyperoxidized PRDX in zygotes and concurrently impaired the generation of 5-hydroxymethylcytosine (5hmC) on the male genome, which is an epigenetic reprogramming event that occurs at the pronuclear stage. Thus, our results suggest that endogenous PRDX is involved in antioxidant mechanisms and epigenetic reprogramming during MZT.

Details

Language :
English
ISSN :
1348-4400
Volume :
64
Issue :
2
Database :
MEDLINE
Journal :
The Journal of reproduction and development
Publication Type :
Academic Journal
Accession number :
29503398
Full Text :
https://doi.org/10.1262/jrd.2018-005