Back to Search
Start Over
Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search.
- Source :
-
Molecules (Basel, Switzerland) [Molecules] 2018 Mar 02; Vol. 23 (3). Date of Electronic Publication: 2018 Mar 02. - Publication Year :
- 2018
-
Abstract
- SET7, serving as the only histone methyltransferase that monomethylates 'Lys-4' of histone H3, has been proved to function as a key regulator in diverse biological processes, such as cell proliferation, transcriptional network regulation in embryonic stem cell, cell cycle control, protein stability, heart morphogenesis and development. What's more, SET7 is involved inthe pathogenesis of alopecia aerate, breast cancer, tumor and cancer progression, atherosclerosis in human carotid plaques, chronic renal diseases, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. Therefore, there is urgent need to develop novel SET7 inhibitors. In this paper, based on DC-S239 which has been previously reported in our group, we employed scaffold hopping- and 2D fingerprint-based similarity searches and identified DC-S285 as the new hit compound targeting SET7 (IC <subscript>50</subscript> = 9.3 μM). Both radioactive tracing and NMR experiments validated the interactions between DC-S285 and SET7 followed by the second-round similarity search leading to the identification ofDC-S303 with the IC <subscript>50</subscript> value of 1.1 μM. In cellular level, DC-S285 retarded tumor cell proliferation and showed selectivity against MCF7 (IC <subscript>50</subscript> = 21.4 μM), Jurkat (IC <subscript>50</subscript> = 2.2 μM), THP1 (IC <subscript>50</subscript> = 3.5 μM), U937 (IC <subscript>50</subscript> = 3.9 μM) cell lines. Docking calculations suggested that DC-S303 share similar binding mode with the parent compoundDC-S239. What's more, it presented good selectivity against other epigenetic targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2. DC-S303 can serve as a drug-like scaffold which may need further optimization for drug development, and can be used as chemical probe to help the community to better understand the SET7 biology.<br />Competing Interests: The authors declare no conflict of interest.
- Subjects :
- Anilides pharmacology
Antineoplastic Agents pharmacology
Binding Sites
Cell Line, Tumor
Cell Proliferation drug effects
Cell Survival drug effects
Drug Design
Enzyme Inhibitors pharmacology
Gene Expression
HL-60 Cells
Histone-Lysine N-Methyltransferase chemistry
Histone-Lysine N-Methyltransferase genetics
Histone-Lysine N-Methyltransferase metabolism
Humans
Jurkat Cells
MCF-7 Cells
Molecular Docking Simulation
Protein Binding
Protein Interaction Domains and Motifs
Protein Structure, Secondary
Structure-Activity Relationship
THP-1 Cells
Thiophenes pharmacology
Anilides chemical synthesis
Antineoplastic Agents chemical synthesis
Enzyme Inhibitors chemical synthesis
Histone-Lysine N-Methyltransferase antagonists & inhibitors
Molecular Imprinting
Thiophenes chemical synthesis
Subjects
Details
- Language :
- English
- ISSN :
- 1420-3049
- Volume :
- 23
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Molecules (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 29498708
- Full Text :
- https://doi.org/10.3390/molecules23030567