Back to Search Start Over

Embryonic lethality in mice lacking Trim59 due to impaired gastrulation development.

Authors :
Su X
Wu C
Ye X
Zeng M
Zhang Z
Che Y
Zhang Y
Liu L
Lin Y
Yang R
Source :
Cell death & disease [Cell Death Dis] 2018 Feb 21; Vol. 9 (3), pp. 302. Date of Electronic Publication: 2018 Feb 21.
Publication Year :
2018

Abstract

TRIM family members have been implicated in a variety of biological processes such as differentiation and development. We here found that Trim59 plays a critical role in early embryo development from blastocyst stage to gastrula. There existed delayed development and empty yolk sacs from embryonic day (E) 8.5 in Trim59-/- embryos. No viable Trim59-/- embryos were observed beyond E9.5. Trim59 deficiency affected primary germ layer formation at the beginning of gastrulation. At E6.5 and E7.5, the expression of primary germ layer formation-associated genes including Brachyury, lefty2, Cer1, Otx2, Wnt3, and BMP4 was reduced in Trim59-/- embryos. Homozygous mutant embryonic epiblasts were contracted and the mesoderm was absent. Trim59 could interact with actin- and myosin-associated proteins. Its deficiency disturbed F-actin polymerization during inner cell mass differentiation. Trim59-mediated polymerization of F-actin was via WASH K63-linked ubiquitination. Thus, Trim59 may be a critical regulator for early embryo development from blastocyst stage to gastrula through modulating F-actin assembly.

Details

Language :
English
ISSN :
2041-4889
Volume :
9
Issue :
3
Database :
MEDLINE
Journal :
Cell death & disease
Publication Type :
Academic Journal
Accession number :
29467473
Full Text :
https://doi.org/10.1038/s41419-018-0370-y