Back to Search Start Over

Exploring 3D Human Action Recognition: from Offline to Online.

Authors :
Liu Z
Li R
Tan J
Source :
Sensors (Basel, Switzerland) [Sensors (Basel)] 2018 Feb 20; Vol. 18 (2). Date of Electronic Publication: 2018 Feb 20.
Publication Year :
2018

Abstract

With the introduction of cost-effective depth sensors, a tremendous amount of research has been devoted to studying human action recognition using 3D motion data. However, most existing methods work in an offline fashion, i.e., they operate on a segmented sequence. There are a few methods specifically designed for online action recognition, which continually predicts action labels as a stream sequence proceeds. In view of this fact, we propose a question: can we draw inspirations and borrow techniques or descriptors from existing offline methods, and then apply these to online action recognition? Note that extending offline techniques or descriptors to online applications is not straightforward, since at least two problems-including real-time performance and sequence segmentation-are usually not considered in offline action recognition. In this paper, we give a positive answer to the question. To develop applicable online action recognition methods, we carefully explore feature extraction, sequence segmentation, computational costs, and classifier selection. The effectiveness of the developed methods is validated on the MSR 3D Online Action dataset and the MSR Daily Activity 3D dataset.<br />Competing Interests: The authors declare no conflict of interest.

Details

Language :
English
ISSN :
1424-8220
Volume :
18
Issue :
2
Database :
MEDLINE
Journal :
Sensors (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
29461502
Full Text :
https://doi.org/10.3390/s18020633