Back to Search
Start Over
Altered Expression of Urea Cycle Enzymes in Amyloid-β Protein Precursor Overexpressing PC12 Cells and in Sporadic Alzheimer's Disease Brain.
- Source :
-
Journal of Alzheimer's disease : JAD [J Alzheimers Dis] 2018; Vol. 62 (1), pp. 279-291. - Publication Year :
- 2018
-
Abstract
- Urea cycle enzymes may play important yet poorly characterized roles in Alzheimer's disease (AD). Our previous results showed that amyloid-β (Aβ) affects urea cycle enzymes in rat pheochromocytoma (PC12) cells. The aim of the present study was to investigate the changes in arginases, other urea cycle enzymes, and nitric oxide synthases (NOSs) in PC12 cells transfected with AβPP bearing the double 'Swedish' mutation (APPsw, K670M/N671L) and in postmortem sporadic AD brain hippocampus; the mutation intensifies Aβ production and strongly associates with AD neuropathology. mRNA expression was analyzed using real-time PCR in cell cultures and DNA microarrays in hippocampal CA1 area of human AD brains. Arginase activity was measured spectrophotometrically, and arginine, ornithine, and citrulline levels by high-performance liquid chromatography. Our data demonstrated that the expression and activity of arginases (Arg1 and Arg2), as well as the expression of argininosuccinate synthase (Ass) were significantly reduced in APPsw cells compared to control. However, argininosuccinate lyase (Asl) was upregulated in APPsw cells. Real-time PCR analysis revealed significant elevation of neuronal nitric oxide synthase (Nnos) mRNA in APPsw cells, without changes in the endothelial Enos, whereas inducible Inos was undetectable. The changes were found to follow closely those observed in the human hippocampal CA1 region of sporadic AD brains. The changes in enzyme expression were accompanied in APPsw cells by significantly elevated citrulline, ornithine, and arginine. Our findings demonstrate that AβPP/Aβ alters arginine metabolism and induces a shift of cellular homeostasis that may support the oxidative/nitrosative stress observed in AD.
- Subjects :
- Alzheimer Disease pathology
Animals
Arginine metabolism
Argininosuccinate Lyase metabolism
Argininosuccinate Synthase metabolism
CA1 Region, Hippocampal pathology
Gene Expression Regulation
Homeostasis physiology
Humans
PC12 Cells
RNA, Messenger metabolism
Rats
Alzheimer Disease metabolism
Amyloid beta-Protein Precursor metabolism
Arginase metabolism
CA1 Region, Hippocampal metabolism
Nitric Oxide Synthase metabolism
Urea metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1875-8908
- Volume :
- 62
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of Alzheimer's disease : JAD
- Publication Type :
- Academic Journal
- Accession number :
- 29439324
- Full Text :
- https://doi.org/10.3233/JAD-170427