Back to Search Start Over

DFT methods applied to answer the question: how accurate is the ligand acidity constant method for estimating the pK a of transition metal hydride complexes MHXL 4 when X is varied?

Authors :
Unsleber JP
Neugebauer J
Morris RH
Source :
Dalton transactions (Cambridge, England : 2003) [Dalton Trans] 2018 Feb 20; Vol. 47 (8), pp. 2739-2747.
Publication Year :
2018

Abstract

Density functional theory (DFT) is used to calculate the relative free energies of deprotonation of the isomers of iron-group hydride complexes MHXL <subscript>4</subscript> where M = Fe, Ru, Os, L <subscript>4</subscript> = (CO) <subscript>4</subscript> or (PMe <subscript>2</subscript> CH <subscript>2</subscript> CH <subscript>2</subscript> PMe <subscript>2</subscript> ) <subscript>2</subscript> for a wide range of anionic ligands X. The free energies of the most stable isomers are used to calculate relative pK <subscript>a</subscript> values where K <subscript>a</subscript> refers to the acid dissociation constant for the equilibrium MHXL <subscript>4</subscript> → [MXL <subscript>4</subscript> ] <superscript>-</superscript> + H <superscript>+</superscript> . These are used to test the proposal that the pK <subscript>a</subscript> for a given metal complex in THF can be simply calculated by adding the contributions to the total pK <subscript>a</subscript> value from each ligand L; these are called ligand acidity constants (LAC) A <subscript>L</subscript> used in the LAC equation [R. H. Morris, J. Am. Chem. Soc., 2014, 136, 1948-1959]. The A <subscript>L</subscript> are calculated using A <subscript>L</subscript> = 0.2 as a reference for the hydride ligand. The A <subscript>L</subscript> of certain less polarizable X ligands are found to be fairly constant (±1 to ±2 units) and consistent with the proposed LAC method for a range of the complexes considered: 2 for Me <superscript>-</superscript> , 1 for OH <superscript>-</superscript> , 1 for NH <subscript>2</subscript> <superscript>-</superscript> , 0 for B(OCH <subscript>2</subscript> CH <subscript>2</subscript> O <superscript>-</superscript> ) <superscript>-</superscript> , -1 for OMe <superscript>-</superscript> , -2 for SH <superscript>-</superscript> and -2 for SMe <superscript>-</superscript> . Other ligands have more variable A <subscript>L</subscript> values (±3 to ±5 units) because of high polarizability or other reasons: 1 for OtBu <superscript>-</superscript> , -1 for F <superscript>-</superscript> , -2 for BMe <subscript>2</subscript> <superscript>-</superscript> , -2 for NMe <subscript>2</subscript> <superscript>-</superscript> , -3 for Cl <superscript>-</superscript> , -3 for PMe <subscript>2</subscript> <superscript>-</superscript> , -3 for Br <superscript>-</superscript> , -5 for I <superscript>-</superscript> , -6 for CN <superscript>-</superscript> and -12 for SiCl <subscript>3</subscript> <superscript>-</superscript> . Iodide stabilizes the anion [MIL <subscript>4</subscript> ] <superscript>-</superscript> more than does fluoride in [MFL <subscript>4</subscript> ] <superscript>-</superscript> making iodide the more acidifying ligand despite its lower electronegativity. DFT is also used to validate the charge correction in the LAC equation.

Details

Language :
English
ISSN :
1477-9234
Volume :
47
Issue :
8
Database :
MEDLINE
Journal :
Dalton transactions (Cambridge, England : 2003)
Publication Type :
Academic Journal
Accession number :
29423492
Full Text :
https://doi.org/10.1039/c7dt03473c