Back to Search
Start Over
Improvement of zinc substitution in the reactivity of magnetite coupled with aqueous Fe(II) towards nitrobenzene reduction.
- Source :
-
Journal of colloid and interface science [J Colloid Interface Sci] 2018 May 01; Vol. 517, pp. 104-112. Date of Electronic Publication: 2018 Feb 07. - Publication Year :
- 2018
-
Abstract
- The reduction of nitrobenzene (NB) by Zn-substituted magnetite coupled with aqueous Fe(II) was studied. A series of Zn-substituted magnetites (Fe <subscript>3-</subscript> <subscript>x</subscript> Zn <subscript>x</subscript> O <subscript>4</subscript> , x = 0, 0.25, 0.49, 0.74, and 0.99) were synthesized by a coprecipitation method followed by systematic analysis of the variation in structure and physicochemical properties of magnetite using XRD, TEM, TG, BET and XAFS. All of the samples had a spinel structure by Zn substitution. Zn <superscript>2+</superscript> primarily occupied the tetrahedral sites, but a portion of them moved to the octahedral sites at higher Zn level. Zn substitution increased the BET specific surface area and surface hydroxyl amount. The electron balance indicated that the NB reduction was primarily through the heterogeneous reaction by Fe <subscript>3-</subscript> <subscript>x</subscript> Zn <subscript>x</subscript> O <subscript>4</subscript> and adsorbed Fe(II), where NB in aqueous solution was reduced by structural Fe <superscript>2+</superscript> in magnetite recharged by adsorbed Fe(II). Various factors, such as aqueous Fe(II) concentration, magnetite stoichiometry and Zn level, were investigated to illustrate their effects on the reduction processes. Both the rate constant k <subscript>obs</subscript> and electron transfer amount illustrated that Zn substitution generally improved the reduction activity of the Fe <subscript>3-</subscript> <subscript>x</subscript> Zn <subscript>x</subscript> O <subscript>4</subscript> /Fe(II) system, while overdose of Zn retarded the process. This issue was attributed to the variation in electron conductivity of Fe <subscript>3-</subscript> <subscript>x</subscript> Zn <subscript>x</subscript> O <subscript>4</subscript> and Zn <superscript>2+</superscript> occupancy.<br /> (Copyright © 2018 Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1095-7103
- Volume :
- 517
- Database :
- MEDLINE
- Journal :
- Journal of colloid and interface science
- Publication Type :
- Academic Journal
- Accession number :
- 29421670
- Full Text :
- https://doi.org/10.1016/j.jcis.2018.01.103