Back to Search
Start Over
Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy.
- Source :
-
Nature communications [Nat Commun] 2018 Feb 02; Vol. 9 (1), pp. 478. Date of Electronic Publication: 2018 Feb 02. - Publication Year :
- 2018
-
Abstract
- Nanostructures of transition metal oxides, such as zinc oxide, have attracted considerable interest for solar-energy conversion and photocatalysis. Both applications are sensitive to the transport and trapping of photoexcited charge carriers. The probing of electron trapping has recently become possible using time-resolved element-sensitive methods, such as X-ray spectroscopy. However, valence-band-trapped holes have so far escaped observation. Herein we use X-ray absorption spectroscopy combined with a dispersive X-ray emission spectrometer to probe the charge carrier relaxation and trapping processes in zinc oxide nanoparticles after above band-gap photoexcitation. Our results, supported by simulations, demonstrate that within 80 ps, photoexcited holes are trapped at singly charged oxygen vacancies, which causes an outward displacement by ~15% of the four surrounding zinc atoms away from the doubly charged vacancy. This identification of the hole traps provides insight for future developments of transition metal oxide-based nanodevices.
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 9
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 29396396
- Full Text :
- https://doi.org/10.1038/s41467-018-02870-4