Back to Search Start Over

Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks.

Authors :
Lages J
Shepelyansky DL
Zinovyev A
Source :
PloS one [PLoS One] 2018 Jan 25; Vol. 13 (1), pp. e0190812. Date of Electronic Publication: 2018 Jan 25 (Print Publication: 2018).
Publication Year :
2018

Abstract

Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical "reduced Google matrix" method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way.

Details

Language :
English
ISSN :
1932-6203
Volume :
13
Issue :
1
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
29370181
Full Text :
https://doi.org/10.1371/journal.pone.0190812