Back to Search
Start Over
Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (r-Rha1) from Aspergillus niger.
- Source :
-
International journal of biological macromolecules [Int J Biol Macromol] 2018 Jun; Vol. 112, pp. 14-21. Date of Electronic Publication: 2018 Jan 31. - Publication Year :
- 2018
-
Abstract
- To improve the thermostability of α-L-rhamnosidase (r-Rha1), an enzyme previously identified from Aspergillus niger JMU-TS528, multiple arginine (Arg) residues were introduced into the r-Rha1 sequence to replace several lysine (Lys) residues that located on the surface of the folded r-Rha1. Hinted by in silico analysis, five surface Lys residues (K134, K228, K406, K440, K573) were targeted to produce a list of 5 single-residue mutants and 4 multiple-residue mutants using site-directed mutagenesis. Among these mutants, a double Lys to Arg mutant, i.e. K406R/K573R, showed the best thermostability improvement. The half-life of this mutant's enzyme activity increased 3 h at 60 °C, 23 min at 65 °C, and 3.5 min at 70 °C, when compared with the wild type. The simulated protein structure based interaction analysis and molecular dynamics calculation indicate that the thermostability improvement of the mutant K406R-K573R was possibly due to the extra hydrogen bonds, the additional cation-π interactions, and the relatively compact conformation. With the enhanced thermostability, the α-L-rhamnosidase mutant, K406R-K573R, has potentially broadened the r-Rha1 applications in food processing industry.<br /> (Copyright © 2018 Elsevier B.V. All rights reserved.)
- Subjects :
- Amino Acid Substitution genetics
Arginine genetics
Aspergillus niger genetics
Enzyme Stability genetics
Glycoside Hydrolases chemistry
Hot Temperature
Hydrogen Bonding
Kinetics
Mutagenesis, Site-Directed
Protein Conformation
Arginine chemistry
Aspergillus niger enzymology
Glycoside Hydrolases genetics
Protein Engineering
Subjects
Details
- Language :
- English
- ISSN :
- 1879-0003
- Volume :
- 112
- Database :
- MEDLINE
- Journal :
- International journal of biological macromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 29355637
- Full Text :
- https://doi.org/10.1016/j.ijbiomac.2018.01.078