Back to Search
Start Over
Long-interval intracortical inhibition as biomarker for epilepsy: a transcranial magnetic stimulation study.
- Source :
-
Brain : a journal of neurology [Brain] 2018 Feb 01; Vol. 141 (2), pp. 409-421. - Publication Year :
- 2018
-
Abstract
- Cortical excitability, as measured by transcranial magnetic stimulation combined with electromyography, is a potential biomarker for the diagnosis and follow-up of epilepsy. We report on long-interval intracortical inhibition data measured in four different centres in healthy controls (n = 95), subjects with refractory genetic generalized epilepsy (n = 40) and with refractory focal epilepsy (n = 69). Long-interval intracortical inhibition was measured by applying two supra-threshold stimuli with an interstimulus interval of 50, 100, 150, 200 and 250 ms and calculating the ratio between the response to the second (test stimulus) and to the first (conditioning stimulus). In all subjects, the median response ratio showed inhibition at all interstimulus intervals. Using a mixed linear-effects model, we compared the long-interval intracortical inhibition response ratios between the different subject types. We conducted two analyses; one including data from the four centres and one excluding data from Centre 2, as the methods in this centre differed from the others. In the first analysis, we found no differences in long-interval intracortical inhibition between the different subject types. In all subjects, the response ratios at interstimulus intervals 100 and 150 ms showed significantly more inhibition than the response ratios at 50, 200 and 250 ms. Our second analysis showed a significant interaction between interstimulus interval and subject type (P = 0.0003). Post hoc testing showed significant differences between controls and refractory focal epilepsy at interstimulus intervals of 100 ms (P = 0.02) and 200 ms (P = 0.04). There were no significant differences between controls and refractory generalized epilepsy groups or between the refractory generalized and focal epilepsy groups. Our results do not support the body of previous work that suggests that long-interval intracortical inhibition is significantly reduced in refractory focal and genetic generalized epilepsy. Results from the second analysis are even in sharper contrast with previous work, showing inhibition in refractory focal epilepsy at 200 ms instead of facilitation previously reported. Methodological differences, especially shorter intervals between the pulse pairs, may have contributed to our inability to reproduce previous findings. Based on our results, we suggest that long-interval intracortical inhibition as measured by transcranial magnetic stimulation and electromyography is unlikely to have clinical use as a biomarker of epilepsy.<br /> (© The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Subjects :
- Adolescent
Adult
Biomarkers
Child
Electromyography
Epilepsy diagnosis
Female
Humans
Male
Middle Aged
Retrospective Studies
Time Factors
Young Adult
Cerebral Cortex physiopathology
Epilepsy physiopathology
Evoked Potentials, Motor physiology
Neural Inhibition physiology
Transcranial Magnetic Stimulation methods
Subjects
Details
- Language :
- English
- ISSN :
- 1460-2156
- Volume :
- 141
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Brain : a journal of neurology
- Publication Type :
- Academic Journal
- Accession number :
- 29340584
- Full Text :
- https://doi.org/10.1093/brain/awx343