Back to Search Start Over

All n-3 PUFA are not the same: MD simulations reveal differences in membrane organization for EPA, DHA and DPA.

Authors :
Leng X
Kinnun JJ
Cavazos AT
Canner SW
Shaikh SR
Feller SE
Wassall SR
Source :
Biochimica et biophysica acta. Biomembranes [Biochim Biophys Acta Biomembr] 2018 May; Vol. 1860 (5), pp. 1125-1134. Date of Electronic Publication: 2018 Jan 03.
Publication Year :
2018

Abstract

Eicosapentaenoic (EPA, 20:5), docosahexaenoic (DHA, 22:6) and docosapentaenoic (DPA, 22:5) acids are omega-3 polyunsaturated fatty acids (n-3 PUFA) obtained from dietary consumption of fish oils that potentially alleviate the symptoms of a range of chronic diseases. We focus here on the plasma membrane as a site of action and investigate how they affect molecular organization when taken up into a phospholipid. All atom MD simulations were performed to compare 1-stearoyl-2-eicosapentaenoylphosphatylcholine (EPA-PC, 18:0-20:5PC), 1-stearoyl-2-docosahexaenoylphosphatylcholine (DHA-PC, 18:0-22:6PC), 1-stearoyl-2-docosapentaenoylphosphatylcholine (DPA-PC, 18:0-22:5PC) and, as a monounsaturated control, 1-stearoyl-2-oleoylphosphatidylcholine (OA-PC, 18:0-18:1PC) bilayers. They were run in the absence and presence of 20mol% cholesterol. Multiple double bonds confer high disorder on all three n-3 PUFA. The different number of double bonds and chain length for each n-3 PUFA moderates the reduction in membrane order exerted (compared to OA-PC, S¯ <subscript>CD</subscript> =0.152). EPA-PC (S¯ <subscript>CD</subscript> =0.131) is most disordered, while DPA-PC (S¯ <subscript>CD</subscript> =0.140) is least disordered. DHA-PC (S¯ <subscript>CD</subscript> =0.139) is, within uncertainty, the same as DPA-PC. Following the addition of cholesterol, order in EPA-PC (S¯ <subscript>CD</subscript> =0.169), DHA-PC (S¯ <subscript>CD</subscript> =0.178) and DPA-PC (S¯ <subscript>CD</subscript> =0.182) is increased less than in OA-PC (S¯ <subscript>CD</subscript> =0.214). The high disorder of n-3 PUFA is responsible, preventing the n-3 PUFA-containing phospholipids from packing as close to the rigid sterol as the monounsaturated control. Our findings establish that EPA, DHA and DPA are not equivalent in their interactions within membranes, which possibly contributes to differences in clinical efficacy.<br /> (Copyright © 2018 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
0005-2736
Volume :
1860
Issue :
5
Database :
MEDLINE
Journal :
Biochimica et biophysica acta. Biomembranes
Publication Type :
Academic Journal
Accession number :
29305832
Full Text :
https://doi.org/10.1016/j.bbamem.2018.01.002