Back to Search
Start Over
Crowds Replicate Performance of Scientific Experts Scoring Phylogenetic Matrices of Phenotypes.
- Source :
-
Systematic biology [Syst Biol] 2018 Jan 01; Vol. 67 (1), pp. 49-60. - Publication Year :
- 2018
-
Abstract
- Scientists building the Tree of Life face an overwhelming challenge to categorize phenotypes (e.g., anatomy, physiology) from millions of living and fossil species. This biodiversity challenge far outstrips the capacities of trained scientific experts. Here we explore whether crowdsourcing can be used to collect matrix data on a large scale with the participation of nonexpert students, or "citizen scientists." Crowdsourcing, or data collection by nonexperts, frequently via the internet, has enabled scientists to tackle some large-scale data collection challenges too massive for individuals or scientific teams alone. The quality of work by nonexpert crowds is, however, often questioned and little data have been collected on how such crowds perform on complex tasks such as phylogenetic character coding. We studied a crowd of over 600 nonexperts and found that they could use images to identify anatomical similarity (hypotheses of homology) with an average accuracy of 82% compared with scores provided by experts in the field. This performance pattern held across the Tree of Life, from protists to vertebrates. We introduce a procedure that predicts the difficulty of each character and that can be used to assign harder characters to experts and easier characters to a nonexpert crowd for scoring. We test this procedure in a controlled experiment comparing crowd scores to those of experts and show that crowds can produce matrices with over 90% of cells scored correctly while reducing the number of cells to be scored by experts by 50%. Preparation time, including image collection and processing, for a crowdsourcing experiment is significant, and does not currently save time of scientific experts overall. However, if innovations in automation or robotics can reduce such effort, then large-scale implementation of our method could greatly increase the collective scientific knowledge of species phenotypes for phylogenetic tree building. For the field of crowdsourcing, we provide a rare study with ground truth, or an experimental control that many studies lack, and contribute new methods on how to coordinate the work of experts and nonexperts. We show that there are important instances in which crowd consensus is not a good proxy for correctness.<br /> (© The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
Details
- Language :
- English
- ISSN :
- 1076-836X
- Volume :
- 67
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Systematic biology
- Publication Type :
- Academic Journal
- Accession number :
- 29253296
- Full Text :
- https://doi.org/10.1093/sysbio/syx052