Back to Search Start Over

Application of Generative Autoencoder in De Novo Molecular Design.

Authors :
Blaschke T
Olivecrona M
Engkvist O
Bajorath J
Chen H
Source :
Molecular informatics [Mol Inform] 2018 Jan; Vol. 37 (1-2). Date of Electronic Publication: 2017 Dec 13.
Publication Year :
2018

Abstract

A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified.<br /> (© 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.)

Details

Language :
English
ISSN :
1868-1751
Volume :
37
Issue :
1-2
Database :
MEDLINE
Journal :
Molecular informatics
Publication Type :
Academic Journal
Accession number :
29235269
Full Text :
https://doi.org/10.1002/minf.201700123