Back to Search
Start Over
Application of Generative Autoencoder in De Novo Molecular Design.
- Source :
-
Molecular informatics [Mol Inform] 2018 Jan; Vol. 37 (1-2). Date of Electronic Publication: 2017 Dec 13. - Publication Year :
- 2018
-
Abstract
- A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified.<br /> (© 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.)
- Subjects :
- Quantitative Structure-Activity Relationship
Deep Learning
Drug Design
Subjects
Details
- Language :
- English
- ISSN :
- 1868-1751
- Volume :
- 37
- Issue :
- 1-2
- Database :
- MEDLINE
- Journal :
- Molecular informatics
- Publication Type :
- Academic Journal
- Accession number :
- 29235269
- Full Text :
- https://doi.org/10.1002/minf.201700123