Back to Search Start Over

A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.

Authors :
Gassler J
Brandão HB
Imakaev M
Flyamer IM
Ladstätter S
Bickmore WA
Peters JM
Mirny LA
Tachibana K
Source :
The EMBO journal [EMBO J] 2017 Dec 15; Vol. 36 (24), pp. 3600-3618. Date of Electronic Publication: 2017 Dec 07.
Publication Year :
2017

Abstract

Fertilization triggers assembly of higher-order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single-nucleus Hi-C (snHi-C), but not bulk Hi-C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin-dependent loop extrusion generates higher-order chromatin structures within the one-cell embryo. Using snHi-C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1-cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi-C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin-dependent loop extrusion organizes mammalian genomes over multiple scales from the one-cell embryo onward.<br /> (© 2017 The Authors. Published under the terms of the CC BY 4.0 license.)

Details

Language :
English
ISSN :
1460-2075
Volume :
36
Issue :
24
Database :
MEDLINE
Journal :
The EMBO journal
Publication Type :
Academic Journal
Accession number :
29217590
Full Text :
https://doi.org/10.15252/embj.201798083