Back to Search Start Over

An interactive framework for whole-brain maps at cellular resolution.

Authors :
Fürth D
Vaissière T
Tzortzi O
Xuan Y
Märtin A
Lazaridis I
Spigolon G
Fisone G
Tomer R
Deisseroth K
Carlén M
Miller CA
Rumbaugh G
Meletis K
Source :
Nature neuroscience [Nat Neurosci] 2018 Jan; Vol. 21 (1), pp. 139-149. Date of Electronic Publication: 2017 Dec 04.
Publication Year :
2018

Abstract

To deconstruct the architecture and function of brain circuits, it is necessary to generate maps of neuronal connectivity and activity on a whole-brain scale. New methods now enable large-scale mapping of the mouse brain at cellular and subcellular resolution. We developed a framework to automatically annotate, analyze, visualize and easily share whole-brain data at cellular resolution, based on a scale-invariant, interactive mouse brain atlas. This framework enables connectivity and mapping projects in individual laboratories and across imaging platforms, as well as multiplexed quantitative information on the molecular identity of single neurons. As a proof of concept, we generated a comparative connectivity map of five major neuron types in the corticostriatal circuit, as well as an activity-based map to identify hubs mediating the behavioral effects of cocaine. Thus, this computational framework provides the necessary tools to generate brain maps that integrate data from connectivity, neuron identity and function.

Details

Language :
English
ISSN :
1546-1726
Volume :
21
Issue :
1
Database :
MEDLINE
Journal :
Nature neuroscience
Publication Type :
Academic Journal
Accession number :
29203898
Full Text :
https://doi.org/10.1038/s41593-017-0027-7