Back to Search Start Over

Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.

Authors :
Barik A
Zhang Y
Grassi R
Nadappuram BP
Edel JB
Low T
Koester SJ
Oh SH
Source :
Nature communications [Nat Commun] 2017 Nov 30; Vol. 8 (1), pp. 1867. Date of Electronic Publication: 2017 Nov 30.
Publication Year :
2017

Abstract

The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO <subscript>2</subscript> dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

Details

Language :
English
ISSN :
2041-1723
Volume :
8
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
29192277
Full Text :
https://doi.org/10.1038/s41467-017-01635-9