Back to Search Start Over

Passive elongation of muscle fascicles in human muscles with short and long tendons.

Authors :
Thom JM
Diong J
Stubbs PW
Herbert RD
Source :
Physiological reports [Physiol Rep] 2017 Dec; Vol. 5 (23).
Publication Year :
2017

Abstract

This study tested the hypothesis that the ratio of changes in muscle fascicle and tendon length that occurs with joint movement scales linearly with the ratio of the slack lengths of the muscle fascicles and tendons. We compared the contribution of muscle fascicles to passive muscle-tendon lengthening in muscles with relatively short and long fascicles. Fifteen healthy adults participated in the study. The medial gastrocnemius, tibialis anterior, and brachialis muscle-tendon units were passively lengthened by slowly rotating the ankle or elbow. Change in muscle fascicle length was measured with ultrasonography. Change in muscle-tendon length was calculated from estimated muscle moment arms. Change in tendon length was calculated by subtracting change in fascicle length from change in muscle-tendon length. The median (IQR) contribution of muscle fascicles to passive lengthening of the muscle-tendon unit, measured as the ratio of the change in fascicle length to the change in muscle-tendon unit length, was 0.39 (0.26-0.48) for the medial gastrocnemius, 0.51 (0.29-0.60) for tibialis anterior, and 0.65 (0.49-0.90) for brachialis. Brachialis muscle fascicles contributed to muscle-tendon unit lengthening significantly more than medial gastrocnemius muscle fascicles, but less than would be expected if the fascicle contribution scaled linearly with the ratio of muscle fascicle and tendon slack lengths.<br /> (© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.)

Details

Language :
English
ISSN :
2051-817X
Volume :
5
Issue :
23
Database :
MEDLINE
Journal :
Physiological reports
Publication Type :
Academic Journal
Accession number :
29192068
Full Text :
https://doi.org/10.14814/phy2.13528