Back to Search Start Over

Automated quantification of protein periodic nanostructures in fluorescence nanoscopy images: abundance and regularity of neuronal spectrin membrane-associated skeleton.

Authors :
Barabas FM
Masullo LA
Bordenave MD
A Giusti S
Unsain N
Refojo D
Cáceres A
Stefani FD
Source :
Scientific reports [Sci Rep] 2017 Nov 22; Vol. 7 (1), pp. 16029. Date of Electronic Publication: 2017 Nov 22.
Publication Year :
2017

Abstract

Fluorescence nanoscopy imaging permits the observation of periodic supramolecular protein structures in their natural environment, as well as the unveiling of previously unknown protein periodic structures. Deciphering the biological functions of such protein nanostructures requires systematic and quantitative analysis of large number of images under different experimental conditions and specific stimuli. Here we present a method and an open source software for the automated quantification of protein periodic structures in super-resolved images. Its performance is demonstrated by analyzing the abundance and regularity of the spectrin membrane-associated periodic skeleton (MPS) in hippocampal neurons of 2 to 40 days in vitro, imaged by STED and STORM nanoscopy. The automated analysis reveals that both the abundance and the regularity of the MPS increase over time and reach maximum plateau values after 14 DIV. A detailed analysis of the distributions of correlation coefficients provides indication of dynamical assembly and disassembly of the MPS.

Details

Language :
English
ISSN :
2045-2322
Volume :
7
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
29167561
Full Text :
https://doi.org/10.1038/s41598-017-16280-x