Back to Search Start Over

Engineering Escherichia coli Co-Cultures for Production of Curcuminoids From Glucose.

Authors :
Fang Z
Jones JA
Zhou J
Koffas MAG
Source :
Biotechnology journal [Biotechnol J] 2018 May; Vol. 13 (5), pp. e1700576. Date of Electronic Publication: 2017 Dec 05.
Publication Year :
2018

Abstract

Curcuminoids (cus) have attracted increasing attention because of the antioxidant, anticancer, and antitumor activities while their production is limited because of its main source, turmeric plant, demonstrates extensive seasonal variation. In this study, we constructed Escherichia coli co-culture system for the rapid production of curcuminoids from glucose. Firstly, the overexpression of curcuminoid synthase and four different strategies related to increasing the intracellular malonyl-CoA pool were conducted in engineered E. coli. We found that bisdemethoxycurcumin (BDMC) is the main product and that high level of malonyl-CoA pool is essential for BDMC production. We also obtained the maximum titer (13.8 mg L <superscript>-1</superscript> ) of BDMC within 4 h by fast preparation directly from p-coumaric acid. Secondly, we developed a process for BDMC synthesis from glucose using a co-culture system where an E. coli strain is used to produce p-coumaric acid from glucose and another E. coli strain converted p-coumaric acid into the final product. Compared to the mono-culture system, the co-culture is more potent and resulted in 6.28 mg L <superscript>-1</superscript> of BDMC from glucose within 22 h of fermentation in a 3-L bioreactor. This is the first time a co-culture method is employed for the production of curcuminoids from glucose in a lab scale bioreactor. This system provides a new method transforming inexpensive substrate into value-added products.<br /> (© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
1860-7314
Volume :
13
Issue :
5
Database :
MEDLINE
Journal :
Biotechnology journal
Publication Type :
Academic Journal
Accession number :
29149547
Full Text :
https://doi.org/10.1002/biot.201700576