Back to Search
Start Over
A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na + exclusion and salt tolerance in maize.
- Source :
-
The New phytologist [New Phytol] 2018 Feb; Vol. 217 (3), pp. 1161-1176. Date of Electronic Publication: 2017 Nov 15. - Publication Year :
- 2018
-
Abstract
- Soil salinity is one of several major abiotic stresses that constrain maize productivity worldwide. An improved understanding of salt-tolerance mechanisms will thus enhance the breeding of salt-tolerant maize and boost productivity. Previous studies have indicated that the maintenance of leaf Na <superscript>+</superscript> concentration is essential for maize salt tolerance, and the difference in leaf Na <superscript>+</superscript> exclusion has previously been associated with variation in salt tolerance between maize varieties. Here, we report the identification and functional characterization of a maize salt-tolerance quantitative trait locus (QTL), Zea mays Na <superscript>+</superscript> Content1 (ZmNC1), which encodes an HKT-type transporter (designated as ZmHKT1). We show that a natural ZmHKT1 loss-of-function allele containing a retrotransposon insertion confers increased accumulation of Na <superscript>+</superscript> in leaves, and salt hypersensitivity. We next show that ZmHKT1 encodes a plasma membrane-localized Na <superscript>+</superscript> -selective transporter, and is preferentially expressed in root stele (including the parenchyma cells surrounding the xylem vessels). We also show that loss of ZmHKT1 function increases xylem sap Na <superscript>+</superscript> concentration and causes increased root-to-shoot Na <superscript>+</superscript> delivery, indicating that ZmHKT1 promotes leaf Na <superscript>+</superscript> exclusion and salt tolerance by withdrawing Na <superscript>+</superscript> from the xylem sap. We conclude that ZmHKT1 is a major salt-tolerance QTL and identifies an important new gene target in breeding for improved maize salt tolerance.<br /> (© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.)
- Subjects :
- Alleles
Amino Acid Sequence
Base Sequence
Cation Transport Proteins chemistry
Cation Transport Proteins genetics
Exons genetics
Gene Expression Regulation, Plant
Genetic Variation
Homeostasis
Phenotype
Plant Proteins chemistry
Plant Proteins genetics
Potassium metabolism
Quantitative Trait Loci genetics
Salinity
Soil
Symporters chemistry
Symporters genetics
Xylem metabolism
Zea mays genetics
Zea mays growth & development
Cation Transport Proteins metabolism
Plant Leaves metabolism
Plant Proteins metabolism
Retroelements genetics
Salt Tolerance
Sodium metabolism
Symporters metabolism
Zea mays physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1469-8137
- Volume :
- 217
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- The New phytologist
- Publication Type :
- Academic Journal
- Accession number :
- 29139111
- Full Text :
- https://doi.org/10.1111/nph.14882