Back to Search Start Over

Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections.

Authors :
Lê VB
Riteau B
Alessi MC
Couture C
Jandrot-Perrus M
Rhéaume C
Hamelin MÈ
Boivin G
Source :
British journal of pharmacology [Br J Pharmacol] 2018 Jan; Vol. 175 (2), pp. 388-403. Date of Electronic Publication: 2017 Dec 10.
Publication Year :
2018

Abstract

Background and Purpose: Protease-activated receptor 1 (PAR1) has been demonstrated to be involved in the pathogenesis of viral diseases. However, its role remains controversial. The goal of our study was to investigate the contribution of PAR1 to respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections.<br />Experimental Approach: Pharmacological approaches were used to investigate the role of PAR1 during RSV and hMPV infection, in vitro using epithelial A549 cells and in vivo using a mouse model of virus infection.<br />Key Results: In vitro, the PAR1 antagonist RWJ-56110 reduced the replication of RSV and hMPV in A549 cells. In agreement with these results, RWJ-56110-treated mice were protected against RSV and hMPV infections, as indicated by less weight loss and mortality. This protective effect in mice correlated with decreased lung viral replication and inflammation. In contrast, hMPV-infected mice treated with the PAR1 agonist TFLLR-NH <subscript>2</subscript> showed increased mortality, as compared to infected mice, which were left untreated. Thrombin generation was shown to occur downstream of PAR1 activation in infected mice via tissue factor exposure as part of the inflammatory response, and thrombin inhibition by argatroban reduced the pathogenicity of the infection with no additive effect to that induced by PAR1 inhibition.<br />Conclusion and Implications: These data show that PAR1 plays a detrimental role during RSV and hMPV infections in mice via, at least, a thrombin-dependent mechanism. Thus, the use of PAR1 antagonists and thrombin inhibitors may have potential as a novel approach for the treatment of RSV and hMPV infections.<br /> (© 2017 The British Pharmacological Society.)

Details

Language :
English
ISSN :
1476-5381
Volume :
175
Issue :
2
Database :
MEDLINE
Journal :
British journal of pharmacology
Publication Type :
Academic Journal
Accession number :
29105740
Full Text :
https://doi.org/10.1111/bph.14084