Back to Search
Start Over
Early Activation of Growth Pathways in Mitral Leaflets Exposed to Aortic Regurgitation: New Insights from an Animal Model.
- Source :
-
The Journal of heart valve disease [J Heart Valve Dis] 2017 May; Vol. 26 (3), pp. 281-289. - Publication Year :
- 2017
-
Abstract
- Background and Aim of the Study: Mitral leaflet enlargement in patients with chronic aortic regurgitation (AR) has been identified as an adaptive mechanism potentially able to prevent functional mitral regurgitation (FMR) in response to left ventricular (LV) dilatation. The timing of valve enlargement is not known, and the related mechanisms are largely unexplored.<br />Methods: AR was induced in 58 rats, and another 54 were used as sham controls. Animals were euthanized at different time points after AR creation (48 h, one week, and three months), and AR severity, FMR and LV dilatation were assessed using echocardiography. Mitral valves were harvested to document the reactivation of embryonic growth pathways.<br />Results: AR animals had increased LV dimensions and mitral annulus size. No animal developed FMR. No change in leaflet length or thickness was seen at 48 h; however, anterior mitral leaflets were longer and thicker in AR animals at one week and three months. Molecular changes were present early (at 48 h and at one week), with positive staining for transforming growth factor-b1 (TGF-b1), Alpha-smooth muscle actin (α-SMA) and matrix metalloproteinase-2 (MMP-2), which suggested active matrix remodeling. Increased gene expression for collagen 1, TGF-β1, α-SMA and MMP-2 was found in the mitral valve at 48 h and at one week, but after three months their expression had returned to normal.<br />Conclusions: This model of AR induces active expansion and thickening of the mitral leaflets. Growth signals are expressed acutely, but not at three months, which suggests that most of this enlargement occurs at an early stage. The stimulation of valvular growth could represent a new strategy for the prevention of FMR.
- Subjects :
- Actins genetics
Actins metabolism
Animals
Aortic Valve Insufficiency diagnostic imaging
Aortic Valve Insufficiency metabolism
Aortic Valve Insufficiency physiopathology
Disease Models, Animal
Echocardiography, Doppler
Extracellular Matrix metabolism
Hypertrophy, Left Ventricular pathology
Hypertrophy, Left Ventricular physiopathology
Male
Matrix Metalloproteinase 2 genetics
Matrix Metalloproteinase 2 metabolism
Mitral Valve diagnostic imaging
Mitral Valve metabolism
Mitral Valve physiopathology
Rats, Wistar
Time Factors
Transforming Growth Factor beta1 genetics
Transforming Growth Factor beta1 metabolism
Up-Regulation
Ventricular Function, Left
Ventricular Remodeling
Aortic Valve Insufficiency pathology
Cell Proliferation
Extracellular Matrix pathology
Mitral Valve pathology
Subjects
Details
- Language :
- English
- ISSN :
- 0966-8519
- Volume :
- 26
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- The Journal of heart valve disease
- Publication Type :
- Academic Journal
- Accession number :
- 29092112