Back to Search Start Over

Hepatic transudation barrier properties.

Authors :
Dongaonkar RM
Stewart RH
Quick CM
Uray KL
Cox CS Jr
Laine GA
Source :
Microcirculation (New York, N.Y. : 1994) [Microcirculation] 2018 Feb; Vol. 25 (2).
Publication Year :
2018

Abstract

Objective: Fluid and protein continuously transude from the surface of the liver. Despite a common understanding that transudation plays a critical role in hepatic interstitial and peritoneal fluid balance, transudation from the entire liver has not been studied. Therefore, the goal of the present work was to provide the first direct measurement of the hepatic transudation rate and transudation barrier properties.<br />Methods: Transudation rates were determined by collecting transudate from the entire liver. Hydraulic conductivity, and fluid transudation and protein reflection coefficients of the transudation barrier (formed by the subscapular interstitial matrix, capsule, and peritoneum) were determined from changes in fluid and protein transudation rates in response to hepatic venous pressure elevation.<br />Results: Following hepatic venous pressure elevation from 6.1 ± 0.9 to 11.1 ± 0.6 mm Hg, transudation rate increased from 0.13 ± 0.03 to 0.37 ± 0.03 mL/min·100 g. Transudation barrier hydraulic conductivity, fluid transudation and protein reflection coefficients (3.9 × 10 <superscript>-4</superscript>  ± 5.7 × 10 <superscript>-5</superscript>  mL/min·mm Hg·cm <superscript>2</superscript> , 0.36 ± 0.04 mL/min·mm Hg, and 0.09 ± 0.03, respectively) were comparable to those reported for hepatic sinusoids.<br />Conclusions: Taken together, these findings suggest that the hepatic transudation barrier is highly permeable at elevated sinusoidal pressures. These fundamental studies provide a better understanding of the hepatic transudation barrier properties and transudation under conditions that are physiologically and clinically relevant to ascites formation.<br /> (© 2017 John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1549-8719
Volume :
25
Issue :
2
Database :
MEDLINE
Journal :
Microcirculation (New York, N.Y. : 1994)
Publication Type :
Academic Journal
Accession number :
29047195
Full Text :
https://doi.org/10.1111/micc.12424