Back to Search Start Over

Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons.

Authors :
Rojas-Piloni G
Guest JM
Egger R
Johnson AS
Sakmann B
Oberlaender M
Source :
Nature communications [Nat Commun] 2017 Oct 11; Vol. 8 (1), pp. 870. Date of Electronic Publication: 2017 Oct 11.
Publication Year :
2017

Abstract

Pyramidal tract neurons (PTs) represent the major output cell type of the neocortex. To investigate principles of how the results of cortical processing are broadcasted to different downstream targets thus requires experimental approaches, which provide access to the in vivo electrophysiology of PTs, whose subcortical target regions are identified. On the example of rat barrel cortex (vS1), we illustrate that retrograde tracer injections into multiple subcortical structures allow identifying the long-range axonal targets of individual in vivo recorded PTs. Here we report that soma depth and dendritic path lengths within each cortical layer of vS1, as well as spiking patterns during both periods of ongoing activity and during sensory stimulation, reflect the respective subcortical target regions of PTs. We show that these cellular properties result in a structure-function parameter space that allows predicting a PT's subcortical target region, without the need to inject multiple retrograde tracers.The major output cell type of the neocortex - pyramidal tract neurons (PTs) - send axonal projections to various subcortical areas. Here the authors combined in vivo recordings, retrograde tracings, and reconstructions of PTs in rat somatosensory cortex to show that PT structure and activity can predict specific subcortical targets.

Details

Language :
English
ISSN :
2041-1723
Volume :
8
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
29021587
Full Text :
https://doi.org/10.1038/s41467-017-00971-0