Back to Search
Start Over
Distinct spatiotemporal patterns of neuronal functional connectivity in primary progressive aphasia variants.
- Source :
-
Brain : a journal of neurology [Brain] 2017 Oct 01; Vol. 140 (10), pp. 2737-2751. - Publication Year :
- 2017
-
Abstract
- Primary progressive aphasia is a syndrome characterized by progressive loss of language abilities with three main phenotypic clinical presentations, including logopenic, non-fluent/agrammatic, and semantic variants. Previous imaging studies have shown unique anatomic impacts within language networks in each variant. However, direct measures of spontaneous neuronal activity and functional integrity of these impacted neural networks in primary progressive aphasia are lacking. The aim of this study was to characterize the spatial and temporal patterns of resting state neuronal synchronizations in primary progressive aphasia syndromes. We hypothesized that resting state brain oscillations will show unique deficits within language network in each variant of primary progressive aphasia. We examined 39 patients with primary progressive aphasia including logopenic variant (n = 14, age = 61 ± 9 years), non-fluent/agrammatic variant (n = 12, age = 71 ± 8 years) and semantic variant (n = 13, age = 65 ± 7 years) using magnetoencephalographic imaging, compared to a control group that was matched in age and gender to each primary progressive aphasia subgroup (n = 20, age = 65 ± 5 years). Each patient underwent a complete clinical evaluation including a comprehensive battery of language tests. We examined the whole-brain resting state functional connectivity as measured by imaginary coherence in each patient group compared to the control cohort, in three frequency oscillation bands-delta-theta (2-8 Hz); alpha (8-12 Hz); beta (12-30 Hz). Each variant showed a distinct spatiotemporal pattern of altered functional connectivity compared to age-matched controls. Specifically, we found significant hyposynchrony of alpha and beta frequency within the left posterior temporal and occipital cortices in patients with the logopenic variant, within the left inferior frontal cortex in patients with the non-fluent/agrammatic variant, and within the left temporo-parietal junction in patients with the semantic variant. Patients with logopenic variant primary progressive aphasia also showed significant hypersynchrony of delta-theta frequency within bilateral medial frontal and posterior parietal cortices. Furthermore, region of interest-based analyses comparing the spatiotemporal patterns of variant-specific regions of interest identified in comparison to age-matched controls showed significant differences between primary progressive aphasia variants themselves. We also found distinct patterns of regional spectral power changes in each primary progressive aphasia variant, compared to age-matched controls. Our results demonstrate neurophysiological signatures of network-specific neuronal dysfunction in primary progressive aphasia variants. The unique spatiotemporal patterns of neuronal synchrony signify diverse neurophysiological disruptions and pathological underpinnings of the language network in each variant.<br /> (© The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Subjects :
- Aged
Aged, 80 and over
Aphasia, Primary Progressive classification
Aphasia, Primary Progressive diagnostic imaging
Atrophy etiology
Atrophy pathology
Brain diagnostic imaging
Brain pathology
Brain Waves physiology
Cognition Disorders diagnosis
Cognition Disorders etiology
Female
Functional Laterality
Gray Matter pathology
Humans
Image Interpretation, Computer-Assisted
Magnetic Resonance Imaging
Magnetoencephalography
Male
Middle Aged
Neuropsychological Tests
ROC Curve
Aphasia, Primary Progressive pathology
Brain physiopathology
Brain Mapping
Subjects
Details
- Language :
- English
- ISSN :
- 1460-2156
- Volume :
- 140
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Brain : a journal of neurology
- Publication Type :
- Academic Journal
- Accession number :
- 28969381
- Full Text :
- https://doi.org/10.1093/brain/awx217