Back to Search Start Over

Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array.

Authors :
Wu J
Tang AHL
Mok ATY
Yan W
Chan GCF
Wong KKY
Tsia KK
Source :
Biomedical optics express [Biomed Opt Express] 2017 Aug 21; Vol. 8 (9), pp. 4160-4171. Date of Electronic Publication: 2017 Aug 21 (Print Publication: 2017).
Publication Year :
2017

Abstract

Apart from the spatial resolution enhancement, scaling of temporal resolution, equivalently the imaging throughput, of fluorescence microscopy is of equal importance in advancing cell biology and clinical diagnostics. Yet, this attribute has mostly been overlooked because of the inherent speed limitation of existing imaging strategies. To address the challenge, we employ an all-optical laser-scanning mechanism, enabled by an array of reconfigurable spatiotemporally-encoded virtual sources, to demonstrate ultrafast fluorescence microscopy at line-scan rate as high as 8 MHz. We show that this technique enables high-throughput single-cell microfluidic fluorescence imaging at 75,000 cells/second and high-speed cellular 2D dynamical imaging at 3,000 frames per second, outperforming the state-of-the-art high-speed cameras and the gold-standard laser scanning strategies. Together with its wide compatibility to the existing imaging modalities, this technology could empower new forms of high-throughput and high-speed biological fluorescence microscopy that was once challenged.

Details

Language :
English
ISSN :
2156-7085
Volume :
8
Issue :
9
Database :
MEDLINE
Journal :
Biomedical optics express
Publication Type :
Academic Journal
Accession number :
28966855
Full Text :
https://doi.org/10.1364/BOE.8.004160