Back to Search Start Over

Imaging the neuroimmune response to alcohol exposure in adolescent baboons: a TSPO PET study using 18 F-DPA-714.

Authors :
Saba W
Goutal S
Auvity S
Kuhnast B
Coulon C
Kouyoumdjian V
Buvat I
Leroy C
Tournier N
Source :
Addiction biology [Addict Biol] 2018 Sep; Vol. 23 (5), pp. 1000-1009. Date of Electronic Publication: 2017 Sep 25.
Publication Year :
2018

Abstract

The effects of acute alcohol exposure to the central nervous system are hypothesized to involve the innate immune system. The neuroimmune response to an initial and acute alcohol exposure was investigated using translocator protein 18 kDa (TSPO) PET imaging, a non-invasive marker of glial activation, in adolescent baboons. Three different alcohol-naive adolescent baboons (3-4 years old, 9 to 14 kg) underwent <superscript>18</superscript> F-DPA-714 PET experiments before, during and 7-12 months after this initial alcohol exposure (0.7-1.0 g/l). The brain distribution of <superscript>18</superscript> F-DPA-714 (V <subscript>T</subscript> ; in ml/cm <superscript>3</superscript> ) was estimated in several brain regions using the Logan plot analysis and the metabolite-corrected arterial input function. Compared with alcohol-naive animals (V <subscript>Tbrain</subscript>  = 3.7 ± 0.7 ml/cm <superscript>3</superscript> ), the regional V <subscript>T</subscript> s of <superscript>18</superscript> F-DPA-714 were significantly increased during alcohol exposure (V <subscript>Tbrain</subscript>  = 7.2 ± 0.4 ml/cm <superscript>3</superscript> ; p < 0.001). Regional V <subscript>T</subscript> s estimated several months after alcohol exposure (V <subscript>Tbrain</subscript>  = 5.7 ± 1.4 ml/cm <superscript>3</superscript> ) were lower (p < 0.001) than those measured during alcohol exposure, but remained significantly higher (p < 0.001) than in alcohol-naive animals. The acute and long-term effects of ethanol exposure were observed globally across all brain regions. Acute alcohol exposure increased the binding of <superscript>18</superscript> F-DPA-714 to the brain in a non-human primate model of alcohol exposure that reflects the 'binge drinking' situation in adolescent individuals. The effect persisted for several months, suggesting a 'priming' of glial cell function after initial alcohol exposure.<br /> (© 2017 Society for the Study of Addiction.)

Details

Language :
English
ISSN :
1369-1600
Volume :
23
Issue :
5
Database :
MEDLINE
Journal :
Addiction biology
Publication Type :
Academic Journal
Accession number :
28944558
Full Text :
https://doi.org/10.1111/adb.12548