Back to Search
Start Over
Lysine acetylation stoichiometry and proteomics analyses reveal pathways regulated by sirtuin 1 in human cells.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2017 Nov 03; Vol. 292 (44), pp. 18129-18144. Date of Electronic Publication: 2017 Sep 11. - Publication Year :
- 2017
-
Abstract
- Lysine acetylation is a widespread posttranslational modification affecting many biological pathways. Recent studies indicate that acetylated lysine residues mainly exhibit low acetylation occupancy, but challenges in sample preparation and analysis make it difficult to confidently assign these numbers, limiting understanding of their biological significance. Here, we tested three common sample preparation methods to determine their suitability for assessing acetylation stoichiometry in three human cell lines, identifying the acetylation occupancy in more than 1,300 proteins from each cell line. The stoichiometric analysis in combination with quantitative proteomics also enabled us to explore their functional roles. We found that higher abundance of the deacetylase sirtuin 1 (SIRT1) correlated with lower acetylation occupancy and lower levels of ribosomal proteins, including those involved in ribosome biogenesis and rRNA processing. Treatment with the SIRT1 inhibitor EX-527 confirmed SIRT1's role in the regulation of pre-rRNA synthesis and processing. Specifically, proteins involved in pre-rRNA transcription, including subunits of the polymerase I and SL1 complexes and the RNA polymerase I-specific transcription initiation factor RRN3, were up-regulated after SIRT1 inhibition. Moreover, many protein effectors and regulators of pre-rRNA processing needed for rRNA maturation were also up-regulated after EX-527 treatment with the outcome that pre-rRNA and 28S rRNA levels also increased. More generally, we found that SIRT1 inhibition down-regulates metabolic pathways, including glycolysis and pyruvate metabolism. Together, these results provide the largest data set thus far of lysine acetylation stoichiometry (available via ProteomeXchange with identifier PXD005903) and set the stage for further biological investigations of this central posttranslational modification.<br /> (© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Subjects :
- Acetylation drug effects
Analytic Sample Preparation Methods
Carbazoles pharmacology
Cell Line, Transformed
Cell Line, Tumor
Chromatography, High Pressure Liquid
Gene Expression Profiling
Histone Deacetylase Inhibitors pharmacology
Humans
Kinetics
Peptide Mapping
Proteomics methods
RNA, Ribosomal, 28S metabolism
Ribosomal Proteins genetics
Ribosomal Proteins metabolism
Sirtuin 1 antagonists & inhibitors
Sirtuin 1 genetics
Tandem Mass Spectrometry
Gene Expression Regulation drug effects
Lysine metabolism
Protein Processing, Post-Translational drug effects
RNA Precursors metabolism
RNA Processing, Post-Transcriptional drug effects
RNA, Ribosomal metabolism
Sirtuin 1 metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 292
- Issue :
- 44
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 28893905
- Full Text :
- https://doi.org/10.1074/jbc.M117.784546