Back to Search Start Over

mTORC2 Signaling Selectively Regulates the Generation and Function of Tissue-Resident Peritoneal Macrophages.

Authors :
Oh MH
Collins SL
Sun IH
Tam AJ
Patel CH
Arwood ML
Chan-Li Y
Powell JD
Horton MR
Source :
Cell reports [Cell Rep] 2017 Sep 05; Vol. 20 (10), pp. 2439-2454.
Publication Year :
2017

Abstract

Tissue-resident macrophages play critical roles in sentinel and homeostatic functions as well as in promoting inflammation and immunity. It has become clear that the generation of these cells is highly dependent upon tissue-specific cues derived from the microenvironment that, in turn, regulate unique differentiation programs. Recently, a role for GATA6 has emerged in the differentiation programming of resident peritoneal macrophages. We identify a critical role for mTOR in integrating cues from the tissue microenvironment in regulating differentiation and metabolic reprogramming. Specifically, inhibition of mTORC2 leads to enhanced GATA6 expression in a FOXO1 dependent fashion. Functionally, inhibition of mTORC2 promotes peritoneal resident macrophage generation in the resolution phase during zymosan-induced peritonitis. Also, mTORC2-deficient peritoneal resident macrophages displayed increased functionality and metabolic reprogramming. Notably, mTORC2 activation distinguishes tissue-resident macrophage proliferation and differentiation from that of M2 macrophages. Overall, our data implicate a selective role for mTORC2 in the differentiation of tissue-resident macrophages.<br /> (Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
2211-1247
Volume :
20
Issue :
10
Database :
MEDLINE
Journal :
Cell reports
Publication Type :
Academic Journal
Accession number :
28877476
Full Text :
https://doi.org/10.1016/j.celrep.2017.08.046