Back to Search
Start Over
Evidence for complex life cycle constraints on salamander body form diversification.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2017 Sep 12; Vol. 114 (37), pp. 9936-9941. Date of Electronic Publication: 2017 Aug 29. - Publication Year :
- 2017
-
Abstract
- Metazoans display a tremendous diversity of developmental patterns, including complex life cycles composed of morphologically disparate stages. In this regard, the evolution of life cycle complexity promotes phenotypic diversity. However, correlations between life cycle stages can constrain the evolution of some structures and functions. Despite the potential macroevolutionary consequences, few studies have tested the impacts of life cycle evolution on broad-scale patterns of trait diversification. Here we show that larval and adult salamanders with a simple, aquatic-only (paedomorphic) life cycle had an increased rate of vertebral column and body form diversification compared to lineages with a complex, aquatic-terrestrial (biphasic) life cycle. These differences in life cycle complexity explain the variations in vertebral number and adult body form better than larval ecology. In addition, we found that lineages with a simple terrestrial-only (direct developing) life cycle also had a higher rate of adult body form evolution than biphasic lineages, but still 10-fold lower than aquatic-only lineages. Our analyses demonstrate that prominent shifts in phenotypic evolution can follow long-term transitions in life cycle complexity, which may reflect underlying stage-dependent constraints.<br />Competing Interests: The authors declare no conflict of interest.
Details
- Language :
- English
- ISSN :
- 1091-6490
- Volume :
- 114
- Issue :
- 37
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 28851828
- Full Text :
- https://doi.org/10.1073/pnas.1703877114