Back to Search
Start Over
Differential regulation of the duplicated fabp7, fabp10 and fabp11 genes of zebrafish by peroxisome proliferator activated receptors.
- Source :
-
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology [Comp Biochem Physiol B Biochem Mol Biol] 2017 Nov; Vol. 213, pp. 81-90. Date of Electronic Publication: 2017 Aug 24. - Publication Year :
- 2017
-
Abstract
- In the duplication-degeneration-complementation model, duplicated gene-pairs undergo nonfunctionalization (loss from the genome), subfunctionalization (the functions of the ancestral gene are sub-divided between duplicate genes), or neofunctionalization (one of the duplicate genes acquires a new function). These processes occur by loss or gain of regulatory elements in gene promoters. Fatty acid-binding proteins (Fabp) belong to a multigene family composed of orthologous proteins that are highly conserved in sequence and function, but differ in their gene regulation. We previously reported that the zebrafish fabp1a, fabp1b.1, and fabp1b.2 promoters underwent subfunctionalization of PPAR responsiveness. Here, we describe the regulation at the duplicated zebrafish fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b gene promoters. Differential control at the duplicated fabp promoters was assessed by DNA sequence analysis, responsiveness to PPAR-isoform specific agonists and NF-κB p50 antagonists in zebrafish liver and intestine explant tissue, and in HEK293A cells transfected with fabp promoter-reporter constructs. Each zebrafish fabp gene displayed unique transcriptional regulation compared to its paralogous duplicate. This work provides a framework to account for the evolutionary trajectories that led to the high retention (57%) of duplicated fabp genes in the zebrafish genome compared to only ~3% of all duplicated genes in the zebrafish genome.<br /> (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Subjects :
- Animals
Fatty Acid-Binding Protein 7 genetics
Fatty Acid-Binding Proteins genetics
HEK293 Cells
Humans
NF-kappa B p50 Subunit genetics
NF-kappa B p50 Subunit metabolism
Peroxisome Proliferator-Activated Receptors genetics
Promoter Regions, Genetic physiology
Zebrafish genetics
Zebrafish Proteins genetics
Fatty Acid-Binding Protein 7 biosynthesis
Fatty Acid-Binding Proteins biosynthesis
Gene Duplication
Gene Expression Regulation physiology
Peroxisome Proliferator-Activated Receptors metabolism
Zebrafish metabolism
Zebrafish Proteins biosynthesis
Subjects
Details
- Language :
- English
- ISSN :
- 1879-1107
- Volume :
- 213
- Database :
- MEDLINE
- Journal :
- Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology
- Publication Type :
- Academic Journal
- Accession number :
- 28844908
- Full Text :
- https://doi.org/10.1016/j.cbpb.2017.08.003