Back to Search Start Over

The DNA Damage Checkpoint Eliminates Mouse Oocytes with Chromosome Synapsis Failure.

Authors :
Rinaldi VD
Bolcun-Filas E
Kogo H
Kurahashi H
Schimenti JC
Source :
Molecular cell [Mol Cell] 2017 Sep 21; Vol. 67 (6), pp. 1026-1036.e2. Date of Electronic Publication: 2017 Aug 24.
Publication Year :
2017

Abstract

Pairing and synapsis of homologous chromosomes during meiosis is crucial for producing genetically normal gametes and is dependent upon repair of SPO11-induced double-strand breaks (DSBs) by homologous recombination. To prevent transmission of genetic defects, diverse organisms have evolved mechanisms to eliminate meiocytes containing unrepaired DSBs or unsynapsed chromosomes. Here we show that the CHK2 (CHEK2)-dependent DNA damage checkpoint culls not only recombination-defective mouse oocytes but also SPO11-deficient oocytes that are severely defective in homolog synapsis. The checkpoint is triggered in oocytes that accumulate a threshold level of spontaneous DSBs (∼10) in late prophase I, the repair of which is inhibited by the presence of HORMAD1/2 on unsynapsed chromosome axes. Furthermore, Hormad2 deletion rescued the fertility of oocytes containing a synapsis-proficient, DSB repair-defective mutation in a gene (Trip13) required for removal of HORMADs from synapsed chromosomes, suggesting that many meiotic DSBs are normally repaired by intersister recombination in mice.<br /> (Copyright © 2017 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1097-4164
Volume :
67
Issue :
6
Database :
MEDLINE
Journal :
Molecular cell
Publication Type :
Academic Journal
Accession number :
28844861
Full Text :
https://doi.org/10.1016/j.molcel.2017.07.027