Back to Search
Start Over
Predicting the murine enterocyte metabolic response to diets that differ in lipid and carbohydrate composition.
- Source :
-
Scientific reports [Sci Rep] 2017 Aug 18; Vol. 7 (1), pp. 8784. Date of Electronic Publication: 2017 Aug 18. - Publication Year :
- 2017
-
Abstract
- The small intestine serves as gatekeeper at the interface between body and diet and is thought to play an important role in the etiology of obesity and associated metabolic disorders. A computational modelling approach was used to improve our understanding of the metabolic responses of epithelial cells to different diets. A constraint based, mouse-specific enterocyte metabolic model (named mmu_ENT717) was constructed to describe the impact of four fully characterized semi-purified diets, that differed in lipid and carbohydrate composition, on uptake, metabolism, as well as secretion of carbohydrates and lipids. Our simulation results predicted luminal sodium as a limiting factor for active glucose absorption; necessity of apical localization of glucose transporter GLUT2 for absorption of all glucose in the postprandial state; potential for gluconeogenesis in enterocytes; and the requirement of oxygen for the formation of endogenous cholesterol needed for chylomicron formation under luminal cholesterol-free conditions. In addition, for a number of enzymopathies related to intestinal carbohydrate and lipid metabolism it was found that their effects might be ameliorated through dietary interventions. In conclusion, our improved enterocyte-specific model was shown to be a suitable platform to study effects of dietary interventions on enterocyte metabolism, and provided novel and deeper insights into enterocyte metabolism.
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 7
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 28821741
- Full Text :
- https://doi.org/10.1038/s41598-017-07350-1