Back to Search Start Over

Prototype Generation Using Self-Organizing Maps for Informativeness-Based Classifier.

Authors :
Moreira LJ
Silva LA
Source :
Computational intelligence and neuroscience [Comput Intell Neurosci] 2017; Vol. 2017, pp. 4263064. Date of Electronic Publication: 2017 Jul 25.
Publication Year :
2017

Abstract

The k nearest neighbor is one of the most important and simple procedures for data classification task. The k NN, as it is called, requires only two parameters: the number of k and a similarity measure. However, the algorithm has some weaknesses that make it impossible to be used in real problems. Since the algorithm has no model, an exhaustive comparison of the object in classification analysis and all training dataset is necessary. Another weakness is the optimal choice of k parameter when the object analyzed is in an overlap region. To mitigate theses negative aspects, in this work, a hybrid algorithm is proposed which uses the Self-Organizing Maps (SOM) artificial neural network and a classifier that uses similarity measure based on information. Since SOM has the properties of vector quantization, it is used as a Prototype Generation approach to select a reduced training dataset for the classification approach based on the nearest neighbor rule with informativeness measure, named i NN. The SOM i NN combination was exhaustively experimented and the results show that the proposed approach presents important accuracy in databases where the border region does not have the object classes well defined.

Details

Language :
English
ISSN :
1687-5273
Volume :
2017
Database :
MEDLINE
Journal :
Computational intelligence and neuroscience
Publication Type :
Academic Journal
Accession number :
28811818
Full Text :
https://doi.org/10.1155/2017/4263064