Back to Search Start Over

Suppression of AGR2 in a TGF-β-induced Smad regulatory pathway mediates epithelial-mesenchymal transition.

Authors :
Sommerova L
Ondrouskova E
Vojtesek B
Hrstka R
Source :
BMC cancer [BMC Cancer] 2017 Aug 15; Vol. 17 (1), pp. 546. Date of Electronic Publication: 2017 Aug 15.
Publication Year :
2017

Abstract

Background: During cancer progression, epithelial cancer cells can be reprogrammed into mesenchymal-like cells with increased migratory potential through the process of epithelial-mesenchymal transition (EMT), representing an essential step of tumor progression towards metastatic state. AGR2 protein was shown to regulate several cancer-associated processes including cellular proliferation, survival and drug resistance.<br />Methods: The expression of AGR2 was analyzed in cancer cell lines exposed to TGF-β alone or to combined treatment with TGF-β and the Erk1/2 inhibitor PD98059 or the TGF-β receptor specific inhibitor SB431542. The impact of AGR2 silencing by specific siRNAs or CRISPR/Cas9 technology on EMT was investigated by western blot analysis, quantitative PCR, immunofluorescence analysis, real-time invasion assay and adhesion assay.<br />Results: Induction of EMT was associated with decreased AGR2 along with changes in cellular morphology, actin reorganization, inhibition of E-cadherin and induction of the mesenchymal markers vimentin and N-cadherin in various cancer cell lines. Conversely, induction of AGR2 caused reversion of the mesenchymal phenotype back to the epithelial phenotype and re-acquisition of epithelial markers. Activated Smad and Erk signaling cascades were identified as mutually complementary pathways responsible for TGF-β-mediated inhibition of AGR2.<br />Conclusion: Taken together our results highlight a crucial role for AGR2 in maintaining the epithelial phenotype by preventing the activation of key factors involved in the process of EMT.

Details

Language :
English
ISSN :
1471-2407
Volume :
17
Issue :
1
Database :
MEDLINE
Journal :
BMC cancer
Publication Type :
Academic Journal
Accession number :
28810836
Full Text :
https://doi.org/10.1186/s12885-017-3537-5