Back to Search Start Over

Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping.

Authors :
Cao Y
Li S
Wang Z
Chang F
Kong J
Gai J
Zhao T
Source :
Frontiers in plant science [Front Plant Sci] 2017 Jul 12; Vol. 8, pp. 1222. Date of Electronic Publication: 2017 Jul 12 (Print Publication: 2017).
Publication Year :
2017

Abstract

Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2 , was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F <subscript>2</subscript> population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1 , and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F <subscript>2</subscript> population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content.

Details

Language :
English
ISSN :
1664-462X
Volume :
8
Database :
MEDLINE
Journal :
Frontiers in plant science
Publication Type :
Academic Journal
Accession number :
28747922
Full Text :
https://doi.org/10.3389/fpls.2017.01222