Back to Search
Start Over
Spectroscopic descriptors for dynamic changes of soluble microbial products from activated sludge at different biomass growth phases under prolonged starvation.
- Source :
-
Water research [Water Res] 2017 Oct 15; Vol. 123, pp. 751-760. Date of Electronic Publication: 2017 Jul 15. - Publication Year :
- 2017
-
Abstract
- In this study, the spectroscopic indices of soluble microbial products (SMP) were explored using absorption and fluorescence spectroscopy to identify different distinctive biomass growth phases (i.e., exponential phase, pseudo-endogenous phase, and endogenous phase) and to describe the microbial activity of activated sludge in a batch type bioreactor under prolonged starvation. The optical descriptors, including UV absorption at 254 nm (UVA254), spectral slope, absorbance slope index (ASI), biological index (BIX), humification index (HIX), and the ratio of tryptophan-like to humic-like components (C1/C2), were examined to describe the dynamic changes in SMP. These indices were mostly associated with dissolved organic carbon (DOC) of SMPs and specific oxygen uptake rate (SOUR). Among those, ASI was the most strongly correlated with the SOUR data for the pseudo-endogenous and the endogenous periods. Although the three microbial phases were well discriminated using the spectral slope, BIX, and the C1/C2 ratio, the C1/C2 ratio can be suggested as the most preferable indicator as it can also trace the changes of the relative abundance of proteins to humic-like substances in SMPs. The suggested spectroscopic descriptors were reasonably explained by the general trends of decreased large-sized biopolymer fractions (e.g., proteins) and increased humic substrates (HS) with starvation time, which were detected by size exclusion chromatography. This study provides a novel insight into the strong potential of using optical descriptors to easily probe microbial status in biological treatment systems.<br /> (Copyright © 2017 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-2448
- Volume :
- 123
- Database :
- MEDLINE
- Journal :
- Water research
- Publication Type :
- Academic Journal
- Accession number :
- 28732328
- Full Text :
- https://doi.org/10.1016/j.watres.2017.07.033