Back to Search Start Over

An Amish founder mutation disrupts a PI(3)P-WHAMM-Arp2/3 complex-driven autophagosomal remodeling pathway.

Authors :
Mathiowetz AJ
Baple E
Russo AJ
Coulter AM
Carrano E
Brown JD
Jinks RN
Crosby AH
Campellone KG
Source :
Molecular biology of the cell [Mol Biol Cell] 2017 Sep 15; Vol. 28 (19), pp. 2492-2507. Date of Electronic Publication: 2017 Jul 18.
Publication Year :
2017

Abstract

Actin nucleation factors function to organize, shape, and move membrane-bound organelles, yet they remain poorly defined in relation to disease. Galloway-Mowat syndrome (GMS) is an inherited disorder characterized by microcephaly and nephrosis resulting from mutations in the WDR73 gene. This core clinical phenotype appears frequently in the Amish, where virtually all affected individuals harbor homozygous founder mutations in WDR73 as well as the closely linked WHAMM gene, which encodes a nucleation factor. Here we show that patient cells with both mutations exhibit cytoskeletal irregularities and severe defects in autophagy. Reintroduction of wild-type WHAMM restored autophagosomal biogenesis to patient cells, while inactivation of WHAMM in healthy cell lines inhibited lipidation of the autophagosomal protein LC3 and clearance of ubiquitinated protein aggregates. Normal WHAMM function involved binding to the phospholipid PI(3)P and promoting actin nucleation at nascent autophagosomes. These results reveal a cytoskeletal pathway controlling autophagosomal remodeling and illustrate several molecular processes that are perturbed in Amish GMS patients.<br /> (© 2017 Mathiowetz, Baple, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).)

Details

Language :
English
ISSN :
1939-4586
Volume :
28
Issue :
19
Database :
MEDLINE
Journal :
Molecular biology of the cell
Publication Type :
Academic Journal
Accession number :
28720660
Full Text :
https://doi.org/10.1091/mbc.E17-01-0022