Back to Search Start Over

Six phenylalanine ammonia-lyases from Camellia sinensis: Evolution, expression, and kinetics.

Authors :
Wu Y
Wang W
Li Y
Dai X
Ma G
Xing D
Zhu M
Gao L
Xia T
Source :
Plant physiology and biochemistry : PPB [Plant Physiol Biochem] 2017 Sep; Vol. 118, pp. 413-421. Date of Electronic Publication: 2017 Jun 29.
Publication Year :
2017

Abstract

Phenylalanine ammonia-lyase (PAL), the branch point enzyme controlling the flow of primary metabolism into second metabolism, converts the L-phenylalanine (L-Phe) to yield cinnamic acid. Based on the sequencing data available from eight transcriptome projects, six PAL genes have been screened out, cloned, and designated as CsPALa-CsPALf. The phylogenetic tree showed that CsPALs were divided into three subgroups, PALa and PALb, PALc and PALd, and PALe and PALf. All six CsPALs exhibited indiscriminate cytosolic locations in epidermis cells and mesophyll cells. Then, the expression profiles of six PAL genes were qualitatively investigated and they displayed tissue-/induced-expression specificity in several tissues or under different exogenous treatments. Furthermore, in vitro enzymatic assays showed that all six recombinant proteins were characterized by the strict substrate specificity toward L-Phe, but no activity toward L-Tyr, and they displayed subtle differences in kinetics and enzymatic properties. These results indicate that CsPALs play both distinct and overlapping roles in plant growth and responses to environmental cues.<br /> (Copyright © 2017. Published by Elsevier Masson SAS.)

Details

Language :
English
ISSN :
1873-2690
Volume :
118
Database :
MEDLINE
Journal :
Plant physiology and biochemistry : PPB
Publication Type :
Academic Journal
Accession number :
28711790
Full Text :
https://doi.org/10.1016/j.plaphy.2017.06.030