Back to Search Start Over

Trapping-desorption and direct-scattering of formaldehyde at Au(111).

Authors :
Krüger BC
Park GB
Meyer S
Wagner RJV
Wodtke AM
Schäfer T
Source :
Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2017 Aug 02; Vol. 19 (30), pp. 19896-19903.
Publication Year :
2017

Abstract

Nonreactive surface scattering of atoms, molecules and clusters can be almost universally described by two mechanisms: trapping-desorption and direct-scattering. A hard cube model with an attractive square well provides a zeroth order description of the branching ratio between these two mechanisms as a function of the incidence energy. However, the trapping process is likely to be enhanced by excitation of internal degrees of freedom during the collision. In this molecular beam surface scattering study, we characterize formaldehyde/Au(111) scattering using angle resolved time-of-flight techniques. The two mechanisms are found to compete in the range of the investigated normal incidence energies between 0.1 and 1.3 eV. Whereas at low incidence energies trapping-desorption dominates, direct-scattering becomes more likely at incidence energies above 0.37 eV. This incidence energy is slightly higher than the desorption energy which is found to be 0.32 ± 0.03 eV by temperature programmed desorption techniques. A simple hard cube model underestimates the observed trapping probabilities indicating the importance of trapping induced by excitation of internal molecular degrees of freedom.

Details

Language :
English
ISSN :
1463-9084
Volume :
19
Issue :
30
Database :
MEDLINE
Journal :
Physical chemistry chemical physics : PCCP
Publication Type :
Academic Journal
Accession number :
28707694
Full Text :
https://doi.org/10.1039/c7cp03907g