Back to Search Start Over

Elimination of undifferentiated human embryonic stem cells by cardiac glycosides.

Authors :
Lin YT
Wang CK
Yang SC
Hsu SC
Lin H
Chang FP
Kuo TC
Shen CN
Chiang PM
Hsiao M
Lu FL
Lu J
Source :
Scientific reports [Sci Rep] 2017 Jul 13; Vol. 7 (1), pp. 5289. Date of Electronic Publication: 2017 Jul 13.
Publication Year :
2017

Abstract

An important safety concern in the use of human pluripotent stem cells (hPSCs) is tumorigenic risk, because these cells can form teratomas after an in vivo injection at ectopic sites. Several thousands of undifferentiated hPSCs are sufficient to induce teratomas in a mouse model. Thus, it is critical to remove all residue-undifferentiated hPSCs that have teratoma potential before the clinical application of hPSC-derived cells. In this study, our data demonstrated the cytotoxic effects of cardiac glycosides, such as digoxin, lanatoside C, bufalin, and proscillaridin A, in human embryonic stem cells (hESCs). This phenomenon was not observed in human bone marrow mesenchymal stem cells (hBMMSCs). Most importantly, digoxin and lanatoside C did not affect the stem cells' differentiation ability. Consistently, the viability of the hESC-derived MSCs, neurons, and endothelium cells was not affected by the digoxin and lanatoside C treatment. Furthermore, the in vivo experiments demonstrated that digoxin and lanatoside C prevented teratoma formation. To the best of our knowledge, this study is the first to describe the cytotoxicity and tumor prevention effects of cardiac glycosides in hESCs. Digoxin and lanatoside C are also the first FDA-approved drugs that demonstrated cytotoxicity in undifferentiated hESCs.

Details

Language :
English
ISSN :
2045-2322
Volume :
7
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
28706279
Full Text :
https://doi.org/10.1038/s41598-017-05616-2