Back to Search
Start Over
Foxd1 is an upstream regulator of the renin-angiotensin system during metanephric kidney development.
- Source :
-
Pediatric research [Pediatr Res] 2017 Nov; Vol. 82 (5), pp. 855-862. Date of Electronic Publication: 2017 Aug 02. - Publication Year :
- 2017
-
Abstract
- BackgroundWe tested the hypothesis that Foxd1, a transcription factor essential for normal kidney development, is an upstream regulator of the renin-angiotensin system (RAS) during ureteric bud (UB)-branching morphogenesis.MethodsUB branching, RAS gene, and protein expression were studied in embryonic mouse kidneys. RAS mRNA expression was studied in mesenchymal MK4 cells.ResultsThe number of UB tips was reduced in Foxd1 <superscript>-/-</superscript> compared with that in Foxd1 <superscript>+/+</superscript> metanephroi on embryonic day E12.5 (14±2.1 vs. 28±1.3, P<0.05). Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) demonstrated that renin, angiotensin I-converting enzyme (ACE), and angiotensin (Ang) II receptor type 1 (AT <subscript>1</subscript> R) mRNA levels were decreased in Foxd1 <superscript>-/-</superscript> compared with those in Foxd1 <superscript>+/+</superscript> E14.5 metanephroi. Western blot analysis and immunohistochemistry showed decreased expression of AGT and renin proteins in Foxd1 <superscript>-/-</superscript> metanephroi compared with that in Foxd1 <superscript>+/+</superscript> metanephroi. Foxd1 overexpression in mesenchymal MK4 cells in vitro increased renin, AGT, ACE, and AT <subscript>1</subscript> R mRNA levels. Exogenous Ang II stimulated UB branching equally in whole intact E12.5 Foxd1 <superscript>-/-</superscript> and Foxd1 <superscript>+/+</superscript> metanephroi grown ex vivo (+364±21% vs. +336±18%, P=0.42).ConclusionWe conclude that Foxd1 is an upstream positive regulator of RAS during early metanephric development and propose that the cross-talk between Foxd1 and RAS is essential in UB-branching morphogenesis.
- Subjects :
- Angiotensinogen genetics
Angiotensinogen metabolism
Animals
Cell Line
Forkhead Transcription Factors deficiency
Forkhead Transcription Factors genetics
Gene Expression Regulation, Developmental
Genotype
Kidney embryology
Mice, Knockout
Morphogenesis
Peptidyl-Dipeptidase A genetics
Peptidyl-Dipeptidase A metabolism
Phenotype
Receptor, Angiotensin, Type 1 genetics
Receptor, Angiotensin, Type 1 metabolism
Renin metabolism
Signal Transduction
Time Factors
Ureter embryology
Forkhead Transcription Factors metabolism
Kidney metabolism
Renin-Angiotensin System genetics
Ureter metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1530-0447
- Volume :
- 82
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Pediatric research
- Publication Type :
- Academic Journal
- Accession number :
- 28665931
- Full Text :
- https://doi.org/10.1038/pr.2017.157