Back to Search Start Over

Metabolic remodeling in hypertrophied and failing myocardium: a review.

Authors :
Peterzan MA
Lygate CA
Neubauer S
Rider OJ
Source :
American journal of physiology. Heart and circulatory physiology [Am J Physiol Heart Circ Physiol] 2017 Sep 01; Vol. 313 (3), pp. H597-H616. Date of Electronic Publication: 2017 Jun 23.
Publication Year :
2017

Abstract

The energy starvation hypothesis proposes that maladaptive metabolic remodeling antedates, initiates, and maintains adverse contractile dysfunction in heart failure (HF). Better understanding of the cardiac metabolic phenotype and metabolic signaling could help identify the role metabolic remodeling plays within HF and the conditions known to transition toward HF, including "pathological" hypertrophy. In this review, we discuss metabolic phenotype and metabolic signaling in the contexts of pathological hypertrophy and HF. We discuss the significance of alterations in energy supply (substrate utilization, oxidative capacity, and phosphotransfer) and energy sensing using observations from human and animal disease models and models of manipulated energy supply/sensing. We aim to provide ways of thinking about metabolic remodeling that center around metabolic flexibility, capacity (reserve), and efficiency rather than around particular substrate preferences or transcriptomic profiles. We show that maladaptive metabolic remodeling takes multiple forms across multiple energy-handling domains. We suggest that lack of metabolic flexibility and reserve (substrate, oxidative, and phosphotransfer) represents a final common denominator ultimately compromising efficiency and contractile reserve in stressful contexts.<br /> (Copyright © 2017 the American Physiological Society.)

Details

Language :
English
ISSN :
1522-1539
Volume :
313
Issue :
3
Database :
MEDLINE
Journal :
American journal of physiology. Heart and circulatory physiology
Publication Type :
Academic Journal
Accession number :
28646030
Full Text :
https://doi.org/10.1152/ajpheart.00731.2016