Back to Search
Start Over
Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss.
- Source :
-
Nature communications [Nat Commun] 2017 Jun 20; Vol. 8, pp. 15613. Date of Electronic Publication: 2017 Jun 20. - Publication Year :
- 2017
-
Abstract
- Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML.
- Subjects :
- Aged
Animals
Bioreactors
Female
Humans
Male
Mice
Mice, Inbred C57BL
Mice, Inbred NOD
Middle Aged
Muscle, Skeletal pathology
Regeneration
Tissue Scaffolds
Cell- and Tissue-Based Therapy methods
Exercise physiology
Muscle, Skeletal injuries
Muscle, Skeletal transplantation
Stem Cell Transplantation methods
Tissue Engineering methods
Subjects
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 8
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 28631758
- Full Text :
- https://doi.org/10.1038/ncomms15613