Back to Search
Start Over
Zebrafish Znfl1 proteins control the expression of hoxb1b gene in the posterior neuroectoderm by acting upstream of pou5f3 and sall4 genes.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2017 Aug 04; Vol. 292 (31), pp. 13045-13055. Date of Electronic Publication: 2017 Jun 16. - Publication Year :
- 2017
-
Abstract
- Transcription factors play crucial roles in patterning posterior neuroectoderm. Previously, zinc finger transcription factor znfl1 was reported to be expressed in the posterior neuroectoderm of zebrafish embryos. However, its roles remain unknown. Here, we report that there are 13 copies of znfl1 in the zebrafish genome, and all the paralogues share highly identical protein sequences and cDNA sequences. When znfl1s are knocked down using a morpholino to inhibit their translation or dCas9-Eve to inhibit their transcription, the zebrafish gastrula displays reduced expression of hoxb1b , the marker gene for the posterior neuroectoderm. Further analyses reveal that diminishing znfl1s produces the decreased expressions of pou5f3 , whereas overexpression of pou5f3 effectively rescues the reduced expression of hoxb1b in the posterior neuroectoderm. Additionally, knocking down znfl1s causes the reduced expression of sall4 , a direct regulator of pou5f3 , in the posterior neuroectoderm, and overexpression of sall4 rescues the expression of pou5f3 in the knockdown embryos. In contrast, knocking down either pou5f3 or sall4 does not affect the expressions of znfl1s Taken together, our results demonstrate that zebrafish znfl1s control the expression of hoxb1b in the posterior neuroectoderm by acting upstream of pou5f3 and sall4 .<br /> (© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Subjects :
- Animals
Biomarkers metabolism
Computational Biology
Gastrula drug effects
Gastrula metabolism
Gene Dosage
Homeodomain Proteins genetics
In Situ Hybridization
Microinjections
Morpholinos pharmacology
Nerve Tissue Proteins antagonists & inhibitors
Nerve Tissue Proteins genetics
Neural Plate drug effects
Neural Plate embryology
Neurogenesis drug effects
Octamer Transcription Factor-3 antagonists & inhibitors
Octamer Transcription Factor-3 genetics
RNA Interference
RNA, Antisense pharmacology
RNA, Messenger antagonists & inhibitors
RNA, Messenger metabolism
Transcription Factors chemistry
Transcription Factors genetics
Zebrafish
Zebrafish Proteins antagonists & inhibitors
Zebrafish Proteins chemistry
Zebrafish Proteins genetics
Gene Expression Regulation, Developmental drug effects
Homeodomain Proteins metabolism
Nerve Tissue Proteins metabolism
Neural Plate metabolism
Octamer Transcription Factor-3 metabolism
Transcription Factors metabolism
Zebrafish Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 292
- Issue :
- 31
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 28623229
- Full Text :
- https://doi.org/10.1074/jbc.M117.777094